Factorise the following expression: 49y2+84yz+36z2
Factorise the given expression by using properties
Given, 49y2+84yz+36z2
We know that (a+b)2=a2+2ab+b2
Now, compare this identity with the given expression, we get
⇒49y2+84yz+36z2=a2+b2+2ab⇒(7y)2+(6z)2+(2×7y×6z)=(a)2+(b)2+(2×a×b)⇒(7y+6z)2=(a+b)2
Hence, the factorisation of 49y2+84yz+36z2 will be (7y+6z)2.
Factorise the following expressions.
(i) a2 + 8a + 16
(ii) p2 − 10p + 25
(iii) 25m2 + 30m + 9
(iv) 49y2 + 84yz + 36z2
(v) 4x2 − 8x + 4
(vi) 121b2 − 88bc + 16c2
(vii) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)
(viii) a4 + 2a2b2 + b4
Factorise:
49y2+84yz+36z2