Find dydx if y=sec-112x2-1.
11-x2
-21-x2
11+x2
None of these
Step-1: Find the required derivative:
Given: y=sec-112x2-1.
Putting , x=cosθ
⇒θ=cos-1x
Now, Denominator
⇒2x2-1=2cos2θ-1
=cos2θ
We can write,
⇒y=sec-11cos2θ⇒y=sec-1sec2θ⇒y=2θ⇒y=2cos-1x
Step-2: Differentiating with respect to x.
⇒dydx=d2cos-1xdx∵ddxcos-1x=-11-x2⇒dydx=-21-x2
Hence, the correct answer is -21-x2.