wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the derivative of 3x2+5sinx.


Open in App
Solution

Apply the formula to calculate the derivative

The derivative of the product of two functions (say) u and v is defined as follows,

ddx(u,v)=u(ddxv)+v(ddxu)

Then, the derivative of 3x2+5sinx can be calculated as,

ddx3x2+5sinx=3x2+5(ddxsinx)+sinxddx3x2+5

ddx3x2+5sinx=3x2+5cosx+sinxddx3x2+5 [ddxsinx=cosx]

ddx3x2+5sinx=3x2+5cosx+sinxddx3x2+ddx5

ddx3x2+5sinx=3x2+5cosx+sinx3ddxx2+ddx5 [ddxnxn=nddxxn,wheren=constant]

ddx3x2+5sinx=3x2+5cosx+sinx32x+0 [ddxxn=nxn-1,ddxC=0]

ddx3x2+5sinx=3x2+5cosx+sinx6xddx3x2+5sinx=3x2+5cosx+6xsinx

Hence, the derivative of 3x2+5sinx is 3x2+5cosx+6xsinx.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Homogeneous Linear Differential Equations (General Form of Lde)
ENGINEERING MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon