Find the derivative of 3x2+5sinx.
Apply the formula to calculate the derivative
The derivative of the product of two functions (say) u and v is defined as follows,
ddx(u,v)=u(ddxv)+v(ddxu)
Then, the derivative of 3x2+5sinx can be calculated as,
ddx3x2+5sinx=3x2+5(ddxsinx)+sinxddx3x2+5
⇒ddx3x2+5sinx=3x2+5cosx+sinxddx3x2+5 [∵ddxsinx=cosx]
⇒ddx3x2+5sinx=3x2+5cosx+sinxddx3x2+ddx5
⇒ddx3x2+5sinx=3x2+5cosx+sinx3ddxx2+ddx5 [∵ddxnxn=nddxxn,wheren=constant]
⇒ddx3x2+5sinx=3x2+5cosx+sinx32x+0 [∵ddxxn=nxn-1,ddxC=0]
⇒ddx3x2+5sinx=3x2+5cosx+sinx6x⇒ddx3x2+5sinx=3x2+5cosx+6xsinx
Hence, the derivative of 3x2+5sinx is 3x2+5cosx+6xsinx.