wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the perpendicular distance from the origin of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ).


Open in App
Solution

Step 1: Determine the equation of the Line

Let A=(cosθ,sinθ) and B=(cosϕ,sinϕ) be the given points.

Then equation of AB is of the form,

y-y1=y2-y1x2-x1x-x1

y-sinθ=sinϕ-sinθcosϕ-cosθ(x-cosθ)

y(cosϕ-cosθ)-sinθ(cosϕ-cosθ)=x(sinϕ-sinθ)-cosθ(sinϕ-sinθ)

y(cosϕ-cosθ)-sinθcosϕ+sinθcosθ=x(sinϕ-sinθ)-cosθsinϕ+sinθcosθ

x(sinϕ-sinθ)-y(cosϕ-cosθ)+sinθcosϕ-cosθsinϕ=0

x(sinϕ-sinθ)-y(cosϕ-cosθ)+sin(θ-ϕ)=0 sinθ-ϕ=sinθcosϕ-cosθsinϕ

Step 2: Determine the distance

We know that distance of this line from the origin,

D=0-0+sin(θ-ϕ)(sinϕ-sinθ)2+(cosϕ-cosθ)2

=sin(θ-ϕ)2-2(cosθcosϕ+sinθsinϕ)

=sin(θ-ϕ)21-cos(θ-ϕ)

=sin(θ-ϕ)2·2sin2θ-ϕ2 1-cosx=2sin2x2,sinx=2sinx2cosx2

=2sinθ-ϕ2·cosθ-ϕ222·sinθ-ϕ2=cosθ-ϕ2

=cosθ-ϕ2

Hence, the required perpendicular distance iscosθ-ϕ2.


flag
Suggest Corrections
thumbs-up
74
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon