Find the perpendicular distance from the origin of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ).
Step 1: Determine the equation of the Line
Let A=(cosθ,sinθ) and B=(cosϕ,sinϕ) be the given points.
Then equation of AB is of the form,
y-y1=y2-y1x2-x1x-x1
y-sinθ=sinϕ-sinθcosϕ-cosθ(x-cosθ)
y(cosϕ-cosθ)-sinθ(cosϕ-cosθ)=x(sinϕ-sinθ)-cosθ(sinϕ-sinθ)
y(cosϕ-cosθ)-sinθcosϕ+sinθcosθ=x(sinϕ-sinθ)-cosθsinϕ+sinθcosθ
x(sinϕ-sinθ)-y(cosϕ-cosθ)+sinθcosϕ-cosθsinϕ=0
x(sinϕ-sinθ)-y(cosϕ-cosθ)+sin(θ-ϕ)=0 ∵sinθ-ϕ=sinθcosϕ-cosθsinϕ
Step 2: Determine the distance
We know that distance of this line from the origin,
D=0-0+sin(θ-ϕ)(sinϕ-sinθ)2+(cosϕ-cosθ)2
=sin(θ-ϕ)2-2(cosθcosϕ+sinθsinϕ)
=sin(θ-ϕ)21-cos(θ-ϕ)
=sin(θ-ϕ)2·2sin2θ-ϕ2 ∵1-cosx=2sin2x2,sinx=2sinx2cosx2
=2sinθ-ϕ2·cosθ-ϕ222·sinθ-ϕ2=cosθ-ϕ2
=cosθ-ϕ2
Hence, the required perpendicular distance iscosθ-ϕ2.
Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.