Answer: (√(3) + 1)/(√(3) – 1)
In trigonometry, sin cos and tan values are the primary functions we consider while solving trigonometric problems. These trigonometry values are used to measure the angles and sides of a right-angle triangle.
The tangent formula
Tan θ = Opposite side/Adjacent side
Tan Values
tan 0° = 0/1 = 0
tan 30° = [(√1/4)/√(3/4)] = 1/√3
tan 45° = 1
tan 60° = [(√3/2)/(½)] = √3
tan 90° = 1/0 = ∞
tan 75° can be written as
tan(75°) = tan(45° + 30°)
tan (A + B) = [tan A + tan B]/[1 – tan A tan B]
tan(75°) = [tan(45°) + tan(30°)]/[1 – tan(45°)tan(30°)]
tan(75°) = [1 + 1/√(3)]/(1 – 1/√(3)]
tan(75°) = (√(3) + 1)/(√(3) – 1)