For all N, cosθ·cos2θ·cos4θ·...·cos2n-1θ=_____
Solve for the required value
Given, cosθ·cos2θ·cos4θ·...·cos2n-1θ=_____
On multiplying numerator and denominator by 2sinθ, we get,
cosθ·cos2θ·cos4θ·...·cos2n-1θ=2sinθcosθ·cos2θ·cos4θ·...·cos2n-1θ2sinθ=sin2θ.cos2θ.cos4θ·...·cos2n-1θ2sinθ∵2sinθcosθ=sin2θ
=2sin2θ·cos2θ·cos4θ·...·cos2n-1θ22sinθ [By multiplying numerator and denominator by 2]
=sin4θ·cos4θ·...·cos2n-1θ2sinθ=2sin4θ·cos4θ·...·cos2n-1θ23sinθ⋮
=2sin2n-1θ·cos2n-1θ2nsinθ [By repeating n times]
=sin2nθ2nsinθ
Hence, the value of cosθ·cos2θ·cos4θ·...·cos2n-1θ=sin2nθ2nsin(θ)
Prove the following by using the principle of mathematical induction for all n ∈ N: