Given 3(log5-log3)-(log5-2log6)=2-logn, find n.
Given, 3(log5-log3)(log5-2log6)=2-logn
Simplify the given expression to find n,
⇒3log5-3log3-log5+2log(2×3)=2-logn⇒2log5-3log3+2log2+2log3=2-logn⇒2log5-log3+2log2=2-logn⇒log52-log3+log22+logn=2⇒log25×4×n3=2⇒log100n3=2⇒100n3=102⇒100n3=100⇒n=3
Hence, n=3.
5n+3−6× 5n+19 × 5n−5n × 22 = 19