We need to find an expression for cos3A
Solution
cos 3A can be written as
cos3A=cos(2A+A)—–(i)
We know the trignometric identity
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
Applying the above identity to equation (i) we get,
cos 3A =cos2AcosA−sin2AsinA
=(−1+2cos2A)cosA−2cosAsinAsinA
=−cosA+2cos3A−2sin2AcosA
=−cosA+2cos 3A−2(1−cos2A)cosA
=−3cosA+4cos3A
Answer
Hence, cos3A= −3cosA+4cos3A