We have to prove tan(x+ y) = (tan x + tan y) / (1 – tan x tan y)
Proof
We will use the relations that tan x = sin x / cos x.
sin (x + y) = sin x * cos y + cos x * sin y
cos (x+ y) = cos x * cos y – sin x * sin y
tan (x+ y) = sin (x + y) / cos (x + y)
=> [sin x * cos y + cos x * sin y] / [cos x * cos y – sin x * sin y]
divide all the terms yy cos x * cos y
=>[ (sin x * cos y)/(cos x * cos y)+ (cos x * sin y)/(cos x * cos y)] / [(cos x * cos y)/(cos x * cos y) – (sin x * sin y)/(cos x * cos y)]
=> [(sin x / cos x) + (sin y / cos y)]/[ 1 – (sin x / cos x)*(sin y/ cos y)]
=> (tan x + tan y) / (1 – tan x * tan y)
=> RHS
Hence proved
Therefore we hxve tan (x + y) = (tan x + tan y) / (1 – tan x * tan y)