How to integrate xex?
Integrate the given expression :
Let I=∫xexdx
We will use the method of by parts to solve the integration.
We now that
∫u(x)v(x)dv=u(x)∫v(x)dx-∫du(x)dx∫v(x)dxdx
Let ,
Therefore,
I=∫xexdx=x∫exdx-∫dxdx∫exdxdx=xex-∫dxdx·exdx∵∫ex=ex+c=xex-∫exdx∵dxdx=1=xex-ex+c
∴∫xexdx=xex-ex+c
Hence, the value of the integrating ∫xexdx is xex-ex+c
Integrate the function. ∫xex(1+x)2dx.