wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2(sina+sinb)x-2sin(a-b)y=3 and 2(cosa+cosb)x+2cos(a-b)y=5 are perpendicular to each other then, sin2asin2b equals to


Open in App
Solution

Step 1: Find slopes of the given equations.

Let m1 and m2 be slopes of equation 1 and equation 2 respectively.

m1=sina+sinbsin(a-b)m2=cosa+cosbcos(a-b)

Step 2: Find the required value:

Given that both the lines are perpendicular to each other.

Thus, the product of the slope of the lines will be -1.

sina+sinbsin(a-b)×cosa+cosbcos(a-b)=-1sinacosa+sinacosb+sinbcosa+sinbcosbsin(a-b)cos(a-b)=-1sinacosa+sinacosb+sinbcosa+sinbcosb=-sin(a-b)cos(a-b)12sin(2a)+12sin(2b)=-sinacosb-sinbcosa-sin(a-b)cos(a-b) ' 2sinacosa=sin2a

sin(2a)+sin(2b)=-212sin(2a-2b)+sin(a+b)sin(2a)+sin(2b)=-sin2(a-b)-2sin(a+b) ; sin(a+b)=sinacosb+cosasinb

Hence the value of sin2asin2b is -sin2(a-b)-2sin(a+b).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle between a Plane and a Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon