If 3x=5y=75z show that z=xy2x+y
Solve for the required value
Given that 3x=5y=75z
Let 3x=5y=75z=k
⇒3=k1x,5=k1y,75=k1z
⇒52×3=k1z ∵75=25×3
⇒k1y2×k1x=k1z
⇒ k2y+1x=k1z∵am×an=am+n
Now comparing the exponents of k
⇒2y+1x=1z⇒2x+yxy=1z
⇒ z=xy2x+y
Hence it is proved that z=xy2x+y
If 3x=5y=(75)z,show that z=xy2x+y