If 4+8-32+768=a2cos11πb, where a and b are natural numbers then b-a is divisible by:
Step 1: Simplify the given expression to required form
Given that 4+8-32+768=a2cos11πb
Let 768=32cosθ
⇒768=32cosθ⇒163=32cosθ⇒cosθ=32⇒θ=cos-132⇒θ=π6
∴ 768=32cosπ6 …1
Consider 4+8-32+768 ….2
Now, substitute 1 in 2, we get,
4+8-32+768=4+8-32+32cosπ6
=4+8-321+cosπ6
=4+8-322cos2π12∵1+cosx=2cos2x2
=4+8-8cosπ12=4+81-cosπ12=4+82sin2π24∵1-cosx=2sin2x2=4+4sinπ24=4+4cosπ2-π24∵sinx=cosπ2-x=4+4cos11π24=41+cos11π24=42cos211π48=22cos11π48
Step 2: Solve for the required value
4+8-32+768=a2cos11πb
⇒ 22cos11π48=a2cos11πb
On comparing, we get, a=2 and b=48
∴b-a=48-2=46
We know that factors of 46 are 1,2,23,46
Hence the value of b-a is divisible by 1,2,23,46