If A,B,C,D are the angles of a cyclic quadrilateral, show that cosA+cosB+cosC+cosD=0.
Prove the statement.
Given: Quadrilateral ABCD is cyclic in nature,
Thus, A+C=180°
B+D=180°
Hence, cosA=cos(180°-C) cos180°-θ=cosθ
⇒ cosA=-cosC………………… 1
cosB=cos(180°-D) cos180°-θ=cosθ
⇒ cosB=-cosD………………… 2
Add equation 1and equation 2.
cosA+cosB=-cosC-cosD
⇒cosA+cosB+cosC+cosD=0
Hence proved that cosA+cosB+cosC+cosD=0.
If A,B,C,D be the angles of a cyclic quadrilateral, taken in order, prove that: cos(180∘−A)+cos(180∘+B)−sin(90∘+D)=0