If A is a square matrix such that A2=I, then (A−I)3+(A+I)3−7A is equal to ________?
Evaluate the given expression:
The given expression is (A−I)3+(A+I)3−7A .
(A−I)3+(A+I)3−7A=A3−I3−3AI(A−I)+A3+I3+3AI(A+I)−7A [(a–b)3=a3–b3–3ab(a–b)][(a+b)3=a3+b3+3ab(a+b)]
=2A3+6AI2−7A=2(A2)A+6A−7A∵I2=IandAI=IA=A=2IA+6A-7A∵A2=I=2A+6A-7A∵AI=IA=A=8A−7A=A
Hence, if A2=I, then (A−I)3+(A+I)3−7A is equal to A.