wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A is a symmetric and B skew-symmetric matrix and A+B is non-singular and C=(A+B)-1(A-B), then prove that

(i)CT(A+B)C=A+B(ii)CT(A-B)C=A-B(iii)CTAC=A


Open in App
Solution

Step 1: To prove CT(A+B)C=(A+B)

A is symmetric. So, AT=A

B is skew-symmetric. So, BT=-B

It is given that, C=(A+B)-1(A-B)

Multiply it by (A+B)

(A+B)C=(A+B)(A+B)-1(A-B)(A+B)C=A-B..(i)

Now,

CT=[(A+B)-1(A-B)]T

=(A-B)T((A+B)-1)T [(AB)T=BTAT]

=(ATBT)((A+B)T)-1 [AT=AandBT=-B]

=(A+B)(AB)-1..(ii)

CT(A+B)C=(A+B)(AB)-1(AB)CT(A+B)C=(A+B)..(iii)

Hence, CT(A+B)C=(A+B)

Step 2: To prove CT(A-B)C=A-B

Now, taking the transpose of (iii)

[CT(A+B)C]T=(A+B)TCT[(A+B)]TC=AT+BTCT(AT+BT)C=ABCT(A-B)C=A-B..(iv)

Hence, CT(A-B)C=A-B

Step 3: To prove CTAC=A

Now, add (iii) and (iv)

CT(A+B)C+CT(A-B)C=A+B+A-BCT[A+B+A-B]C=2A2CTAC=2ACTAC=A

Hence, CTAC=A

Hence, all parts are proved

(i)CT(A+B)C=A+B(ii)CT(A-B)C=A-B(iii)CTAC=A


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon