If cosA+cosB=4·sin2C2 then prove that the sides a,c,b of a triangle ABC is in A.P
Prove the given expression:
Given,
cosA+cosB=4·sin2C2⇒2cosA+B2cosA-B2=4·sin2C2
Sum of angles of triangle =A+B+C=180°
So, A+B=180°-C
⇒2cos180°-C2cosA-B2=4·sin2C2⇒2cos90°-C2cosA-B2=4·sin2C2⇒2sinC2cosA-B2=4·sin2C2⇒cosA-B2=2·sinC2
Multiply both sides by cosC2 we get
⇒cosC2cosA-B2=2·sinC2cosC2⇒cosC2cosA-B2=sinC∵sin2θ=2sinθcosθ⇒cos180°-A-B2cosA-B2=sinC⇒sinA+B2cosA-B2=sinC
Multiplying both side by 2
⇒2sinA+B2cosA-B2=2sinC⇒sinA+sinB=2sinC....(1)
We know that
sinAa=sinBb=sinCc=t[let'ssay]sinA=at,sinB=btandsinC=ct⇒at+bt=2ct(using(1))⇒a+b=2c
So, the sides a,c,b of a triangle ABC are in A.P.
Hence proved.