If cosec6(θ)-cot6θ=acotθ+bcot2θ+c, then a+b+c=
Find the required value
The given expression is
cosec6(θ)-cot6θ=acotθ+bcot2θ+c,
We know that
a3-b3=a-ba2+ab+b2
∴L.H.S=cosec6(θ)-cot6θ=cosec2(θ)-cot2θcosec4(θ)+cosec2(θ)cot2θ+cot4θ=cosec4(θ)+cosec2(θ)cot2θ+cot4θ∵cosec2(θ)-cot2θ=1=cosec2(θ)cosec2(θ)+cot2θ+cot4θ=1+cot2θ1+2cot2θ+cot4θ∵cosec2(θ)-cot2θ=1=1+2cot2θ+cot2θ+2cot4θ+cot4θ=1+3cot2θ+3cot4θR.H.S=acot4θ+bcot2θ+c
Comparing L.H.S and R.H.S we get
a=3,b=3c=1∴a+b+c=7
Hence, the value of a+b+c is 7