wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If lmy+nzlx=mnz+lxmy=nlx+mynz, prove y+zxl=z+xym=x+yzn.


Open in App
Solution

Step 1: Simplify the given equation

The given equation is,

lmy+nzlx=mnz+lxmy=nlx+mynz

On dividing the above equation by lmn, we get,

lmy+nzlxlmn=mnz+lxmylmn=nlx+mynzlmn

my+nzlxmn=nz+lxmyln=lx+mynzlm

Step 2: Use the property of equal fractions

Now, since, ab=cd=efa+cb+d=c+ed+f=e+af+b

So, my+nzlx+nz+lxmymn+ln=nz+lxmy+lx+mynzln+lm=lx+mynz+my+nzlxlm+mn

my+nzlx+nz+lxmymn+ln=nz+lxmy+lx+mynzln+lm=lx+mynz+my+nzlxlm+mn

2nzm+ln=2lxn+ml=2myl+nm

2zm+l=2xn+m=2yl+n

Step 3: Use properties of equations

Now, on adding and subtracting the fractions in the above equation, we get,

2z+2y2xm+l+l+nn+m=2z+2x2ym+l+n+ml+n=2x+2y2zl+n+n+ml+m

2z+2y2xm+l+l+nn-m=2z+2x2ym+l+n+ml-n=2x+2y2zl+n+n+ml-m

2z+yx2l=2z+xy2m=2x+yz2n

z+yxl=z+xym=x+yzn

Hence, it is proved that y+zxl=z+xym=x+yzn.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving simultaneous linear equation using method of elimination.
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon