If P(5,r) = P (6,r-1), find r.
We have,
P(5,r) = P(6,r-1)
⇒5!(5−r)!=6![6−(r−1)]!
[∵nPr=n!(n−r)!]
⇒1(5−r)!=6![7−r]!
⇒1(5−r)!=6(7−r)×(7−r−1)(7−r−2)!
⇒1(5−r)!=6(7−r)×(6−r)(5−r)!
⇒1=6(7−r)×(6−r)
⇒(6−r)×(7−r)=6
⇒42−6r−7r+r2=6
⇒r2−12r+42−6=0
⇒r2−12r+42−6=0
⇒r2−13r+36=0
⇒r2−9r−4r+36=0
⇒r2−9r−4r+36=0
⇒r(r−9)−4(r−9)=0
⇒(r−9)(r−4)=0
⇒r=4[∵r≤n∴r−9≠0]
Hence, r= 4