If p(š„)=x2-4š„+3, evaluate: š(2)āš(ā1)+š12.
Find the value of p(2)āp(ā1)+p12
p(x)=x2ā4x+3
According to the given details
When x=2, p(x)=p(2)
Substituting x=2,
p(2)=(2)2ā4(2)+3=4-8+3=-4+3=ā1
When x=ā1, p(x)=p(ā1)
Substituting x=-1,
p(ā1)=(ā1)2-4(ā1)+3=1+4+3=8
When x=12 , p(x)=p12
Substituting x=12,
p12=122-412+3=14-2+3=14+1=54
Now substitute values in given equation
p(2)-p(ā1)+p12=ā1ā8+54=-9+54=-36+54=-314
Hence the value of p(2)āp(ā1)+p12 is -314