If sinα+sinβ=a and cosα+cosβ=b, then prove that cosα-β=a2+b2-22
Prove the given condition:
Given:
sinα+sinβ=a→1
cosα+cosβ=b→2
On squaring and adding 1 and 2, we have,
sin2α+sin2β+2×sinαsinβ+cos2α+cos2β+2×cosαcosβ=a2+b2⇒1+1+2(sinαsinβ+cosαcosβ)=a2+b2⇒2(sinαsinβ+cosαcosβ)=a2+b2−2⇒2cos(α−β)=a2+b2−2[∵cos(A−B)=sinAsinB+cosAcosB]⇒cos(α−β)=a2+b2−22
Hence proved that cosα-β=a2+b2-22.