wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinx+sin2x+sin3x=1 then find the value of cos6x-4cos4x+8cos2x.


Open in App
Solution

Use basic trigonometric identities

Given, sinx+sin2x+sin3x=1

sin3x+sinx=1-sin2xsinxsin2x+1=cos2xsin2x+cos2x=1sin(x)(1-cos2(x)+1)=cos2(x)sin(x)(2-cos2(x))=cos2(x)

Squaring on both sides

sin2x4+cos4x-4cos2x=cos4xa-b2=a2+b2-2ab1-cos2x4+cos4x-4cos2x=cos4xsin2x+cos2x=14+5cos4x-8cos2x-cos6x=cos4xcos6x-4cos4x+8cos2x=4

Hence, value of cos6x-4cos4x+8cos2x is 4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon