If sinx+sin2x+sin3x=1 then find the value of cos6x-4cos4x+8cos2x.
Use basic trigonometric identities
Given, sinx+sin2x+sin3x=1
sin3x+sinx=1-sin2x⇒sinxsin2x+1=cos2x∵sin2x+cos2x=1⇒sin(x)(1-cos2(x)+1)=cos2(x)⇒sin(x)(2-cos2(x))=cos2(x)
Squaring on both sides
⇒sin2x4+cos4x-4cos2x=cos4x∵a-b2=a2+b2-2ab⇒1-cos2x4+cos4x-4cos2x=cos4x∵sin2x+cos2x=1⇒4+5cos4x-8cos2x-cos6x=cos4x⇒cos6x-4cos4x+8cos2x=4
Hence, value of cos6x-4cos4x+8cos2x is 4.