If tanA+B=3,tanA-B=13 and 0⩽A+B≤π2,A>B . Find A and B.
Step 1: Form linear equations from the given equations
Given : tanA+B=3,tanA-B=13 and 0⩽A+B≤π2,A>B
Since 0⩽A+B≤π2 both A and B lie in first quadrant.
tanA+B=3⇒A+B=60°...itanA-B=13⇒A-B=30°...(ii)
Step 2: Simplify the linear equations
Add i and ii.
A+B+A-B=60+30⇒2A=90⇒A=45°
Substitute in (i)
A+B=60⇒45+B=60⇒B=15°
Hence, A=45° and B=15°.