If tanA=2-1 then show that sinA·cosA=24.
Step 1: Divide the given condition into sin and cos
Given,
tanA=2-1⇒sinAcosA=2-1⇒sinA=cosA2-1
To prove: sinA·cosA=24
Proof:
Put the value of sinA in sin2A+cos2A=1
⇒cosA2-12+cos2A=1⇒cos2A2-12+cos2A=1⇒cos2A2+1-22+1=1⇒cosA=±14-22
Step 2: Simplify to find the value of sinA·cosA
Put the value of cosA in the expression of sinA
⇒sinA=±2-14-22⇒sinA·cosA=±2-14-22×±14-22⇒sinA·cosA=2-14-22⇒sinA·cosA=2-1222-1⇒sinA·cosA=122⇒sinA·cosA=24
Hence Proved.
If 2x=3y=12z,Show that 1z=1y+2x.
If tan θ=1√7, show that cosec2θ−sec2θ(cosec2θ+sec2θ=34