If tanα+cotα=2 then find the value of cot20α+tan20α is
0
2
20
220
Step 1 : Simplifying using basic trigonometric identities
Use cotα=1tanα
From given equation
tanα+1tanα=2⇒tan2α-2tanα+1=0
Step 2 : Find roots of Quadratic equation obtained
tanα-12=0∵a-b2=a2+b2-2ab⇒tanα=1⇒cotα=1
Step 3 : Find value of given expression
cot20α+tan20α=120+120⇒cot20α+tan20α=2
Hence option B is the correct answer.