If tancos-1x=sincot-112 then x is equal to
15
25
35
53
Step 1. Solve for sincot-112
Given, tancos-1x=sincot-112
Let cot-112=θ
⇒cotθ=12⇒tanθ=2⇒sinθ=25;∵tanx=PerpendicularBaseandsinx=PerpendicularPerpendicular2+Base2⇒θ=sin-125∴cot-112=sin-125⇒sincot-112=sinsin-125⇒sincot-112=25
Step 2. Find the value of x
Now,
tancos-1x=sincot-112⇒tancos-1x=25⇒cos-1x=tan-125
Let, tanθ=25
⇒cosθ=53∵tanx=PerpendicularBaseandcosx=BaseBase2+Perpendicular2⇒θ=cos-153
∴cos-1x=cos-153⇒x=53
Hence, x is 53, so, the correct option is (D).
If |x|=5 thenx is equal to ____.
If then x is equal to