If xsin3θ+ycos3θ=sinθcosθ andxsinθ=ycosθ, prove that x2+y2=1.
Prove the result x2+y2=1
Given: xsin3θ+ycos3θ=sinθcosθ.........(i)
and xsinθ=ycosθ.......(ii)
Now, from i we get
xsin3θ+ycos3θ=sinθcosθ⇒xsin(θ)sin2(θ)+ycos3θ=sinθcosθ⇒ycos(θ)sin2(θ)+ycos3θ=sinθcosθ[From(ii)]⇒ycos(θ)[sin2(θ)+cos2θ]=sinθcosθ⇒ycos(θ)=sinθcosθ[sin2(θ)+cos2θ=1]⇒ycos(θ)=sinθ⇒y=sinθ........(iii)
From ii we get
⇒xsinθ=ycosθ⇒xsinθ=sinθcosθ⇒x=cosθ..........(iv)
Now using iii&iv , we get;
x2+y2=sin2θ+cos2θ=1
Therefore x2+y2=1
Hence proved.
Prove that the curves x=y2 and xy=k cut at right angle if 8k2=1.