wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xsin3θ+ycos3θ=sinθcosθ andxsinθ=ycosθ, prove that x2+y2=1.


Open in App
Solution

Prove the result x2+y2=1

Given: xsin3θ+ycos3θ=sinθcosθ.........(i)

and xsinθ=ycosθ.......(ii)

Now, from i we get

xsin3θ+ycos3θ=sinθcosθxsin(θ)sin2(θ)+ycos3θ=sinθcosθycos(θ)sin2(θ)+ycos3θ=sinθcosθ[From(ii)]ycos(θ)[sin2(θ)+cos2θ]=sinθcosθycos(θ)=sinθcosθ[sin2(θ)+cos2θ=1]ycos(θ)=sinθy=sinθ........(iii)

From ii we get

xsinθ=ycosθxsinθ=sinθcosθx=cosθ..........(iv)

Now using iii&iv , we get;

x2+y2=sin2θ+cos2θ=1

Therefore x2+y2=1

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon