If y=3coslogx+4sinlogx, show that x2y2+xy1+y=0.
Prove the given condition:
y=3coslogx+4sinlogx⇒dydx=−3xsin(logx)+4xcos(logx)⇒xdydx=−3sin(logx)+4cos(logx)
Differentiating both sides,
⇒xd2ydx2+dydx=-3xcoslogx-4xsinlogx⇒x2d2ydx2+xdydx=-{3coslogx+4sinlogx⇒x2d2ydx2+xdydx=-y⇒x2d2ydx2+xdydx+y=0⇒x2y2+xy1+y=0
Hence, proved
If y = sin(m sin-1x), then prove that (1- x2)y2 - xy1 + m2y = 0