In $ ∆\mathrm{ABC}$ $ \mathrm{AD}$ is the perpendicular bisector of $ \mathrm{BC}$. Show that $ ∆\mathrm{ABC}$ is an isosceles triangle in which $ \mathrm{AB} = \mathrm{AC}$.
Prove the required statement:
Given: ADisperpendicularbisectorofBC
In∆ADBand∆ADCAD=AD(Commonside)∠ADB=∠ADC(90°angle)BD=DC(ADisbisectorofBC)∴∆ADB≅∆ADC(bySAScongruency)⇒AB=AC(Correspondingsidesofcongruenttriangles)
Hence, proved that AB=AC.
In ΔABC, AD is the perpendicular bisector of BC (see the given figure). Show that ΔABC is an isosceles triangle in which AB = AC.