In ΔABC,BC=ABand∠B=80°. Then ∠A is equal to
80°
40°
50°
100°
The explanation for the correct answer.
Given: ∠B=80°andAB=BCin∆ABC
Here AB=BC
Therefore, triangle ABC is an isosceles triangle.
Nowin∆ABC∠A=∠C(∵∆ABCisanisoscelestriangle)∵∠A+∠B+∠C=180°(Anglesumpropertyoftriangle)⇒2∠C+∠B=180°(∵∠A=∠C)⇒2∠C+80=180⇒2∠C=180-80⇒2∠C=100⇒∠C=1002⇒∠C=50°
Hence option (C) is correct.
Name the property where a,bandc
a+b=b+a:
In △ABC, if BC=AB and ∠B=80°,then ∠A is equal to :