In ΔABC, if cosA=sinB-cosC then show that it is a right-angled triangle.
Prove that ΔABCis a right-angled triangle:
Given: cosA=sinB-cosC
⇒cosA=sinB-cosC⇒cosA+cosC=sinB⇒2cosA+C2·cosA-C2=sinB[cosx+cosy=2cos(x+y2)·cos(x-y2)]⇒2cosπ2-B2.cosA-C2=sinB[A+B+C=π⇒A+C2=π2-B2]⇒2sinB2·cosA-C2=sinB⇒2sinB2·cosA-C2=2sinB2cosB2[sinx=2sinx2cosx2]⇒cosA-C2=cosB2⇒A-C2=B2⇒A=B+C⇒A+B+C=180°(Anglesumpropertyoftriangle)⇒A+A=180°⇒2A=180°⇒A=90°
Hence, ΔABC is a right-angled triangle.