wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, if cosA=sinB-cosC then show that it is a right-angled triangle.


Open in App
Solution

Prove that ΔABCis a right-angled triangle:

Given: cosA=sinB-cosC

cosA=sinB-cosCcosA+cosC=sinB2cosA+C2·cosA-C2=sinB[cosx+cosy=2cos(x+y2)·cos(x-y2)]2cosπ2-B2.cosA-C2=sinB[A+B+C=πA+C2=π2-B2]2sinB2·cosA-C2=sinB2sinB2·cosA-C2=2sinB2cosB2[sinx=2sinx2cosx2]cosA-C2=cosB2A-C2=B2A=B+CA+B+C=180°(Anglesumpropertyoftriangle)A+A=180°2A=180°A=90°

Hence, ΔABC is a right-angled triangle.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangle Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon