In Figure $ \mathrm{BA}\left|\right|\mathrm{ED} \mathrm{and} \mathrm{BC}\left|\right|\mathrm{EF}. $Show that $ \angle \mathrm{ABC}=\angle \mathrm{DEF}$ [Hint: Produce $ \mathrm{DE}$ to intersect $ \mathrm{BC}$ at $ \mathrm{P}$ (say)].
Prove the required statement:
Given:
Construction: Extend to
(corresponding angles)
(corresponding angles)
From (1) and (2)
Hence proved