Integral xsinxsec3xdx is equal to
Step 1: Find ‘u’ and ‘v’
Given, xsinxsec3x
Now,
We know that , ∫u.vdx=u∫vdx-∫dudx∫vdxdx
Now ,
∫xsinxsec3xdx=∫x.sinx.1cos3xdx=∫x.tanx.sec2xdx=x∫secxsecxtanxdx-∫1·∫secxsecxtanxdxdx[u=x,v=tanx.sec2x]
Step 2: Find the value of ∫secxsecxtanxdx
Put secx=t
⇒secxtanxdx=dt∴∫secxsecxtanxdx=∫tdt=t22=sec2x2∴∫xsinxsec3xdx=xsec2x2-∫sec2x2dx=xsec2x2-tanx2+C∵∫sec2x=tanx+C
Hence , integral of xsinxsec3xdx is xsec2x2-tanx2+C.