wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate sin3x-cos3xsin2xcos2xdx.


Open in App
Solution

Step 1: Simplify the given integration.

In the question, sin3x-cos3xsin2xcos2xdx is given.

Let I=sin3x-cos3xsin2xcos2xdx

I=sin3xsin2xcos2xdx-cos3xsin2xcos2xdxI=sinxcos2xdx-cosxsin2xdx

Assume that, u=sinxcos2xdx,v=cosxsin2xdx.

So, I=u-v...(1)

Step 2: Compute the value of u.

Since, u=sinxcos2xdx

Assume that, cosx=t.

Differentiate both sides with respect to x.

-sinxdx=dt

So, u can be written as u=-dtt2.

u=-dtt2x-ndx=x1-n1-nu=1t+Cu=secx+Ccosx=1secx

Step 3: Compute the value of v.

Since, v=cosxsin2xdx

Assume that, sinx=z.

Differentiate both sides with respect to x.

dz=cosxdx

So, v can be written as v=dzz2.

v=dzz2x-ndx=x1-n1-nv=-1z+Cv=-cosecx+Ccscx=1sinx

Substitute the value of u and v in equation 1.

I=u+vI=secx+cosecx+C

Hence sin3x-cos3xsin2xcos2xdx=secx+cosecx+C.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon