We have to integrate ∫sin3(x)dx
Solution
∫sin3(x)dx=∫sin(x)(1−cos2(x))dx
=∫sin(x)dx−∫sin(x)cos2(x)dx
Let us consider the first integral
We know that
∫sin(x)dx=−cos(x)+C
Now for the second integral,
Let us assume that cos(x)=u
Hence, du=−sin(x)dx
Therefore
−∫sin(x)cos2(x)dx=∫u2du
=u3/3+C
=1/3cos3(x)+C
Combining all the above obtained values we get
∫sin3(x)dx=∫sin(x)dx−∫sin(x)cos2(x)dx
=−cos(x)+1/3cos3(x)+C
Answer
∫sin3(x)dx=−cos(x)+1/3cos3(x)+C