Integrate ∫xtan-1xdx.
Evaluate the given integral
Given, ∫xtan-1xdx
Let, I=∫xtan-1xdx
Let, t=tan-1x⇒tant=x
Differentiating both sides,
dxdt=sec2t⇒dx=sec2tdt⇒I=∫tant·t·sec2tdt
From integration by parts, we know that,
∫fx·gx=fx∫gxdx-∫f'x∫gxdx
Here, fx=t,gx=tantsec2t
⇒I=t∫tant·sec2tdt-∫[dtdt∫tan(t)·sec2(t)dt]
But,
∫tant·sec2tdt=∫tant·dtant∵ddttant=sec2t⇒∫tant·sec2tdt=tan2t2
⇒I=t·tan2t2-∫tan2t2dt⇒I=t·tan2t2-∫sec2t-12dt∵1+tan2t=sec2t⇒I=t·tan2t2-tant2+t2+C∵∫sec2t=tant
Replacing back t=tan-1x and tant=x, we get,
I=x2tan-1x2-x2+tan-1x2+C
Therefore, ∫xtan-1xdx=x2tan-1x2-x2+tan-1x2+C.