wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Integrate xtan-1xdx.


Open in App
Solution

Evaluate the given integral

Given, xtan-1xdx

Let, I=xtan-1xdx

Let, t=tan-1x
tant=x

Differentiating both sides,

dxdt=sec2tdx=sec2tdtI=tant·t·sec2tdt

From integration by parts, we know that,

fx·gx=fxgxdx-f'xgxdx

Here, fx=t,gx=tantsec2t

I=ttant·sec2tdt-[dtdttan(t)·sec2(t)dt]

But,

tant·sec2tdt=tant·dtantddttant=sec2ttant·sec2tdt=tan2t2

I=t·tan2t2-tan2t2dtI=t·tan2t2-sec2t-12dt1+tan2t=sec2tI=t·tan2t2-tant2+t2+Csec2t=tant

Replacing back t=tan-1x and tant=x, we get,

I=x2tan-1x2-x2+tan-1x2+C

Therefore, xtan-1xdx=x2tan-1x2-x2+tan-1x2+C.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon