Let a,b,c be three non-coplanar vectors such that r1=a−b+c, r2=b+c−a, r3=c+a+b,r=2a−3b+4c. If r=λ1r1+λ2r2+λ3r3, then
λ1=7
λ1+λ3=6
λ1+λ2+λ3=4
λ2+λ3=2
Explanation for the correct option:
Simplification of expression:
Given, r=λ1r1+λ2r2+λ3r3
∴ 2a-3b+4c=λ1r1+λ2r2+λ3r3
⇒ 2a-3b+4c=λ1a-b+c+λ2b+c-a+λ3(c+a+b)
⇒ 2a-3b+4c=aλ1-λ2+λ3+bλ2-λ1+λ3+cλ1+λ2+λ3
On comparing the coefficients of c we get,
Hence option (C) is the correct answer.