wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let F(x)=sin4x+cos4x. Then Fis an increasing function in the interval?


Open in App
Solution

Determine derivative:

F(x)=sin4x+cos4x

F'(x)=4sin3xcosx+4cos3x(-sinx)F'(x)=4sinxcosx(sin2x-cos2x)F'(x)=2sin2x(sin2x-cos2x)[2sinθcosθ=sin2θ]F'(x)=-2sin2x(cos2x)[sin2θ-cos2θ=-cos2θ]F'(x)=-sin4x

Thus, F(x) is increasing when F'(x)>0

-sin4x>0sin4x<04xπ,2πxπ,4π2

In genereal x2+π4,nπ2+π2

Hence, Fis increasing function in x(nπ2+π4,nπ2+π2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon