Let F(x)=sin4x+cos4x. Then Fis an increasing function in the interval?
Determine derivative:
F(x)=sin4x+cos4x
⇒F'(x)=4sin3xcosx+4cos3x(-sinx)⇒F'(x)=4sinxcosx(sin2x-cos2x)⇒F'(x)=2sin2x(sin2x-cos2x)[2sinθcosθ=sin2θ]⇒F'(x)=-2sin2x(cos2x)[sin2θ-cos2θ=-cos2θ]⇒F'(x)=-sin4x
Thus, F(x) is increasing when F'(x)>0
⇒-sin4x>0⇒sin4x<0⇒4x∈π,2π⇒x∈π,4π2
In genereal x∈nπ2+π4,nπ2+π2
Hence, Fis increasing function in x∈(nπ2+π4,nπ2+π2)