Prove: (4X+7Y)2−(4X−7Y)2=112XY
Determine the expression of (4X+7Y)2−(4X−7Y)2=112XY
Use formula:
(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab
Now, consider
L.H.S=(4X+7Y)2−(4X−7Y)2=(4X)2+(7Y)2+2.4X.7Y−(4X)2+(7Y)2-2.4X.7Y=16X2+49Y2+56XY−16X2+49Y2-56XY=16X2+49Y2+56XY−16X2-49Y2+56XY=112XY=R.H.S
Hence, proved.
Factorise:
7y2−19y−6