Prove that cosA1+sinA=cotA2-1cotA2+1
L.H.S=cosA1+sinA
=2cos2A2–11+2sinA2cosA2…….(.cosθ=2cos2θ2-1,sinθ=2sinθ2cosθ2)
=cos2A2+cos2A2–1Sin2A2+cos2A2+2sinA2cosA2…………..(sin2θ+cos2θ=1)
=cos2A2-sin2A2SinA2+cosA22………………………(a+b2=a2+b2+2ab)
=cosA2+sinA2cosA2-sinA2SinA2+cosA2sinA2+cosA2………………..(a2-b2=a+ba-b)
=cosA2-sinA2SinA2+cosA2
Dividing numerator and denominator by sinA2
=cosA2sinA2-sinA2sinA2SinA2sinA2+cosA2sinA2…………………………….(cosθsinθ=cotθ)
=cotA2-11+cotA2
=R.H.S.
Hence, it is proved that cosA1+sinA=cotA2-1cotA2+1.
Prove that following identities:
cot A+cot (60∘+A)−cot (60∘−A)=3 cot 3A