Prove that (cosecA-sinA)(secA-cosA)=1tanA+cotA.
Proving (cosecA-sinA)(secA-cosA)=1tanA+cotA
L.H.S.=(cosecA-sinA)(secA-cosA)
=1sinA-sinA1cosA-cosA
=1-sin2AsinA1-cos2AcosA
=cos2AsinAsin2AcosA ……….(1-cos2A=sin2A,sin2A+cos2A=1)
=cos2A.sin2AsinA.cosA
=cosA.sinA1
=sinA.cosAsin2A+cos2A ..……(sin2A+cos2A=1)
=1sin2A+cos2AsinA.cosA
=1sin2AsinA.cosA+cos2AsinA.cosA
=1sinAcosA+cosAsinA
=1tanA+cotA
=R.H.S.
Hence proved.
Prove that : tanA−tanBcotB−cotA=tanBcotA
prove that: cotA-cosA/ cotA +cosA = cosecA-1/cosecA+1
if cotA=3x-1l12x , prove that cotA+cosecA=6x or -1l6x