Prove that (secA+tanA-1)(secA-tanA+1)=2tanA.
As we have (secA+tanA-1)(secA-tanA+1)=2tanA.
Taking LHS (secA+tanA-1)(secA-tanA+1)
⇒1cosA+sinAcosA-11cosA-sinAcosA+1⇒1+sinA-cosAcosA1-sinA+cosAcosA⇒1-sinA+cosA+sinA-sin2A+sinAcosA-cosA+sinAcosA-cos2Acos2A⇒2sinAcosAcos2A⇒2tanA
Prove that : tan2A = (sec2A+1)(sec2A-1)1/2