Prove that tan2a-tan2b=[cos2b-cos2a]cos2acos2b=(sin2a-sin2b)(cos2a.cos2b)
Determine the proof of the given expression tan2a-tan2b=[cos2b-cos2a]cos2acos2b=(sin2a-sin2b)(cos2a.cos2b)
Solve the L.H.S part:
tan2a–tan2b=(sin2acos2a)–(sin2bcos2b)⇒=(cos2bsin2a–cos2asin2b)cos2acos2b⇒=[cos2b(1–cos2a)–cos2a(1–cos2b)]cos2acos2b∵sin2a+cos2a=1⇒=[cos2b–cos2bcos2a–cos2a+cos2acos2b]cos2acos2b⇒=[cos2b–cos2a]cos2acos2b⇒=[1–sin2b–1+sin2a]cos2acos2b⇒=(sin2a–sin2b)cos2acos2b
Hence, the L.H.S = R.H.S.
Prove that: tanA+tanBtanA−tanB=sin(A+B)sin(A−B)
If a, b, c are in G.P. then prove that : a2+ab+b2bc+ca+ab=b+ac+b
Prove that:
tanA+tanBcotA+cotB=tan A tan B
If tan θ=ab,prove that a sin θ−b cos θa sin θ+b cos θ=a2−b2a2+b2