wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(cosAsinA+1)(cosA+sinA1)=cosecA+cotA, using the identity cosec2A=1+cot2A.


Open in App
Solution

Proof:

Consider the LHS of the given expression.

LHS=(cosAsinA+1)(cosA+sinA1)=(cosAsinA+1)sinA(cosA+sinA1)sinADividenumeratoranddenominatorbysinA=cotA-1+cosecAcotA+1-cosecAUsecosec2A-cot2A=1=cotA-cosec2A+cot2+cosecAcotA+1-cosecA=cotA+cosecA+(cotA-cosecA)(cotA+cosecA)cotA+1-cosecA=cotA+cosecA(1+cotA-cosecA)cotA+1-cosecA=cotA+cosecA=RHS

Hence, proved.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon