Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(cosA–sinA+1)(cosA+sinA–1)=cosecA+cotA, using the identity cosec2A=1+cot2A.
Proof:
Consider the LHS of the given expression.
LHS=(cosA–sinA+1)(cosA+sinA–1)=(cosA–sinA+1)sinA(cosA+sinA–1)sinADividenumeratoranddenominatorbysinA=cotA-1+cosecAcotA+1-cosecAUsecosec2A-cot2A=1=cotA-cosec2A+cot2+cosecAcotA+1-cosecA=cotA+cosecA+(cotA-cosecA)(cotA+cosecA)cotA+1-cosecA=cotA+cosecA(1+cotA-cosecA)cotA+1-cosecA=cotA+cosecA=RHS
Hence, proved.