Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(cosecθ-cotθ)2=1-cosθ1+cosθ
Proof:
Consider the LHS ,
LHS=(cosecθ-cotθ)2=cosec2θ+cot2θ-2·cosecθ·cotθUse(a-b)2=a2+b2-2ab=1sin2θ+cos2θsin2θ-2·1sinθ·cosθsinθ∵cosecθ=1sinθandcotθ=cosθsinθ=1+cos2θ-2cosθsin2θ=(1-cosθ)21-cos2θ∵sin2θ+cos2θ=1=(1-cosθ)2(1-cosθ)(1+cosθ)∵a2-b2=(a-b)(a+b)=1-cosθ1+cosθ=RHS
Hence, proved.