Prove the following:sinθ1+cosθ+1+cosθsinθ=2cosecθ
To provesinθ1+cosθ+1+cosθsinθ=2cosecθ.
consider L.H.S.:
LHS=sinθ1+cosθ+1+cosθsinθ=sin2θ+(1+cosθ)2sinθ·(1+cosθ)=sin2θ+cos2θ+2cosθ+1sinθ·(1+cosθ)∵(a+b)2=a2+2ab+b2=1+2cosθ+1sinθ·(1+cosθ)∵sin2θ+cos2θ=1=2(1+cosθ)sinθ·(1+cosθ)=2sinθ=2cosecθ∵1sinθ=cosecθ=RHS
Thus,LHS=RHS
Hence,sinθ1+cosθ+1+cosθsinθ=2cosecθ is proved.