wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following:sinθ1+cosθ+1+cosθsinθ=2cosecθ


Open in App
Solution

To provesinθ1+cosθ+1+cosθsinθ=2cosecθ.

consider L.H.S.:

LHS=sinθ1+cosθ+1+cosθsinθ=sin2θ+(1+cosθ)2sinθ·(1+cosθ)=sin2θ+cos2θ+2cosθ+1sinθ·(1+cosθ)(a+b)2=a2+2ab+b2=1+2cosθ+1sinθ·(1+cosθ)sin2θ+cos2θ=1=2(1+cosθ)sinθ·(1+cosθ)=2sinθ=2cosecθ1sinθ=cosecθ=RHS

Thus,LHS=RHS

Hence,sinθ1+cosθ+1+cosθsinθ=2cosecθ is proved.


flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon