wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following: tanA1+secA-tanA1-secA=2cosecA


Open in App
Solution

To prove tanA1+secA-tanA1-secA=2cosecA.

consider L.H.S.:

LHS=tanA1+secA-tanA1-secA=tanA(1-secA)-tanA(1+secA)(1+secA)(1-secA)=tanA-tanA·secA-tanA-tanA·secA1-sec2A(a+b)(a-b)=a2-b2=-2tanA·secA-tan2Asec2A-tan2A=1=2secAtanA=2cosA×cosAsinAsecA=1cosAandtanA=sinAcosA=2sinA=2cosecA=RHS

Thus, LHS=RHS

Hence, tanA1+secA-tanA1-secA=2cosecA is proved.


flag
Suggest Corrections
thumbs-up
52
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon