(secA+tanA)(1−sinA)=?
CosA
sinA
secA
cotA
Use appropriate trigonometric identities and simplify given expression
We know that,
secA=1cosAtanA=sinAcosA
Substitute the above values in given expression
(secA+tanA)(1–sinA)=1cosA+sinAcosA×(1-sinA)=1+sinAcosA(1–sinA)=(1–sin2A)cosA∵a-ba+b=a2-b2=cos2AcosA∵sin2x+cos2x=1=cosA
Hence, option A is the correct answer.
Whole root of secA-1 / secA+1 +whole root of secA+1 / secA-1 = 2cosecA
under root seca-1/seca+1 + under root seca+1/seca-1 = 2coseca
can somebody answer this?