Show that :(secθ+cosθ)(secθ-cosθ)=tan2θ+sin2θ
To prove :
(secθ+cosθ)(secθ-cosθ)=tan2θ+sin2θ
Proof:
LHS=(secθ+cosθ)(secθ−cosθ)=sec2θ−cos2θ∵a+b(a-b)=a2-b2=(1+tan2θ)−(1−sin2θ)∵sec2θ-tan2θ=1&(sin2θ+cos2θ=1)=1+tan2θ-1+sin2θ=tan2θ+sin2θ=RHS
Thus, (secθ+cosθ)(secθ-cosθ)=tan2θ+sin2θ.
Hence Proved.
Show that